RSA und Primzahlen: Die Mathematik der Geheimnisse

0
43

Das Problem des sicheren Boten

Stellen Sie sich vor, Sie wollen Ihrer Bank eine geheime Nachricht schicken (Ihr Passwort). Das Problem: Das Internet ist wie eine Postkarte. Jeder Knotenpunkt, über den die Daten fließen, kann mitlesen. Wie verschlüsselt man etwas so, dass jeder Ihnen eine Nachricht senden kann (Verschlüsselung), aber nur Sie sie lesen können (Entschlüsselung)?

Die Lösung fanden Rivest, Shamir und Adleman (RSA) im Jahr 1977. Sie nutzten Falltür-Funktionen.

Die Einbahnstraße der Zahlen

Nehmen Sie einen taschenrechner online und multiplizieren Sie zwei Primzahlen:

$53 \times 59 = 3127$.

Das geht in Sekundenbruchteilen.

Aber wenn ich Ihnen nur die Zahl $3127$ gebe und frage: "Welche zwei Primzahlen habe ich malgenommen?", stehen Sie vor einem riesigen Problem. Sie müssen mühsam alle Zahlen durchprobieren.

In der Kryptographie nutzt man Primzahlen mit hunderten von Stellen. Das Produkt ($N$) ist öffentlich bekannt. Aber die Faktoren ($p$ und $q$), die man zum Entschlüsseln braucht, sind geheim. Selbst alle Supercomputer der Welt bräuchten Millionen Jahre, um $N$ wieder in $p$ und $q$ zu zerlegen.

Der Briefkasten-Vergleich

RSA funktioniert wie ein öffentlicher Briefkasten:

  1. Public Key (Das Schloss): Jeder kann Nachrichten in den Briefkasten werfen und ihn verschließen. Dieser Schlüssel ist öffentlich bekannt.

  2. Private Key (Der Schlüssel): Nur der Besitzer des Briefkastens hat den Schlüssel, um ihn zu öffnen und die Nachrichten herauszuholen.

    Wenn Sie also "https" im Browser sehen, hat Ihre Bank Ihnen gerade ihr offenes Vorhängeschloss geschickt. Ihr Browser schließt Ihre Daten damit ein, und nur die Bank kann sie wieder öffnen.

Die Gefahr durch Quantencomputer

Diese Sicherheit ist nicht absolut, sie ist nur eine Frage der Zeit. Ein normaler Computer ist zu langsam zum "Knacken" (Faktorisieren). Aber Quantencomputer könnten mit dem Shor-Algorithmus diese Rechnung theoretisch in Sekunden lösen. Deshalb suchen Mathematiker heute schon nach "Post-Quanten-Kryptographie", die nicht mehr auf Primzahlen basiert, sondern auf noch komplexeren geometrischen Gittern.


Kontakt

Name: Adelard Armino - ChatGPTDeutsch.Info Adelard Armino - ChatGPT Deutsch

Telefon: +49 15227788154

E-Mail: [email protected]

Adresse: Limmerstraße 13, 30451 Hannover, Deutschland

Suche
Kategorien
Mehr lesen
Spiele
Memortis Shore Exploration Tips – Honkai: Star Rail Guide
Memortis Shore Exploration Tips Navigating the Memortis Shore in Honkai: Star Rail can be quite...
Von Xtameem Xtameem 2025-11-07 02:01:46 0 334
Startseite
Building and Interior Applications Emerge as Prime Drivers in Global Marble Market Segmentation Outlook
The global marble market, valued at USD 68.41 billion in 2024, is projected to experience a...
Von Emma Verghise 2025-10-14 13:38:04 0 405
Party
Решились подыскать работу в эскорте? Звоните, мы можем помочь!
Наше эскорт-агентство именуют лучшим! Рассмотрим почему модели выбирают нас, невзирая на массу...
Von Sonnick84 Sonnick84 2024-09-07 08:11:57 0 4KB
Spiele
MLB The Show 25: Program 9 Update – New Cards
A new multiplayer event has just been launched in MLB The Show 25, sparking enthusiasm among...
Von Xtameem Xtameem 2025-12-02 03:32:12 0 124
Andere
Collagen Sector: Developments and Landscape Forecast 2025 - 2032
Executive Summary Collagen Market : During the forecast period of 2025 to 2032 the...
Von Kritika Patil 2025-09-30 09:29:39 0 571