RSA und Primzahlen: Die Mathematik der Geheimnisse

0
43

Das Problem des sicheren Boten

Stellen Sie sich vor, Sie wollen Ihrer Bank eine geheime Nachricht schicken (Ihr Passwort). Das Problem: Das Internet ist wie eine Postkarte. Jeder Knotenpunkt, über den die Daten fließen, kann mitlesen. Wie verschlüsselt man etwas so, dass jeder Ihnen eine Nachricht senden kann (Verschlüsselung), aber nur Sie sie lesen können (Entschlüsselung)?

Die Lösung fanden Rivest, Shamir und Adleman (RSA) im Jahr 1977. Sie nutzten Falltür-Funktionen.

Die Einbahnstraße der Zahlen

Nehmen Sie einen taschenrechner online und multiplizieren Sie zwei Primzahlen:

$53 \times 59 = 3127$.

Das geht in Sekundenbruchteilen.

Aber wenn ich Ihnen nur die Zahl $3127$ gebe und frage: "Welche zwei Primzahlen habe ich malgenommen?", stehen Sie vor einem riesigen Problem. Sie müssen mühsam alle Zahlen durchprobieren.

In der Kryptographie nutzt man Primzahlen mit hunderten von Stellen. Das Produkt ($N$) ist öffentlich bekannt. Aber die Faktoren ($p$ und $q$), die man zum Entschlüsseln braucht, sind geheim. Selbst alle Supercomputer der Welt bräuchten Millionen Jahre, um $N$ wieder in $p$ und $q$ zu zerlegen.

Der Briefkasten-Vergleich

RSA funktioniert wie ein öffentlicher Briefkasten:

  1. Public Key (Das Schloss): Jeder kann Nachrichten in den Briefkasten werfen und ihn verschließen. Dieser Schlüssel ist öffentlich bekannt.

  2. Private Key (Der Schlüssel): Nur der Besitzer des Briefkastens hat den Schlüssel, um ihn zu öffnen und die Nachrichten herauszuholen.

    Wenn Sie also "https" im Browser sehen, hat Ihre Bank Ihnen gerade ihr offenes Vorhängeschloss geschickt. Ihr Browser schließt Ihre Daten damit ein, und nur die Bank kann sie wieder öffnen.

Die Gefahr durch Quantencomputer

Diese Sicherheit ist nicht absolut, sie ist nur eine Frage der Zeit. Ein normaler Computer ist zu langsam zum "Knacken" (Faktorisieren). Aber Quantencomputer könnten mit dem Shor-Algorithmus diese Rechnung theoretisch in Sekunden lösen. Deshalb suchen Mathematiker heute schon nach "Post-Quanten-Kryptographie", die nicht mehr auf Primzahlen basiert, sondern auf noch komplexeren geometrischen Gittern.


Kontakt

Name: Adelard Armino - ChatGPTDeutsch.Info Adelard Armino - ChatGPT Deutsch

Telefon: +49 15227788154

E-Mail: [email protected]

Adresse: Limmerstraße 13, 30451 Hannover, Deutschland

Search
Categories
Read More
Art
What Is the Human Microbiome? Health Benefits & Market Growth
Executive Summary Human Microbiome Market Trends: Share, Size, and Future Forecast ...
By Kritika Patil 2025-08-05 06:09:50 0 759
Fashion
Europe Eggs Market Future Scope: Growth, Share, Value, Size, and Analysis
The Europe plant-based eggs market size was valued at USD 152.39 million in 2024 and is...
By Aryan Mhatre 2025-09-12 11:29:47 0 1K
Fashion
Tools and Platforms to Promote Private Label Car Cleaning Products in Germany
Germany has one of Europe’s most mature automotive markets, where car owners place high...
By Prabal Raverkar 2025-12-04 12:47:17 0 152
Games
Superalloy in Last War Survival: Gear Crafting Guide
In the realm of Last War Survival, superalloy stands out as a cornerstone material vital to gear...
By Xtameem Xtameem 2025-09-16 08:44:00 0 453
Other
Checking Your IPO Allotment Status Online Using PAN Number
Investing in IPOs has become one of the most popular ways for retail investors to participate in...
By Bhumika Panchal 2025-11-10 06:55:20 0 548