RSA und Primzahlen: Die Mathematik der Geheimnisse

0
681

Das Problem des sicheren Boten

Stellen Sie sich vor, Sie wollen Ihrer Bank eine geheime Nachricht schicken (Ihr Passwort). Das Problem: Das Internet ist wie eine Postkarte. Jeder Knotenpunkt, über den die Daten fließen, kann mitlesen. Wie verschlüsselt man etwas so, dass jeder Ihnen eine Nachricht senden kann (Verschlüsselung), aber nur Sie sie lesen können (Entschlüsselung)?

Die Lösung fanden Rivest, Shamir und Adleman (RSA) im Jahr 1977. Sie nutzten Falltür-Funktionen.

Die Einbahnstraße der Zahlen

Nehmen Sie einen taschenrechner online und multiplizieren Sie zwei Primzahlen:

$53 \times 59 = 3127$.

Das geht in Sekundenbruchteilen.

Aber wenn ich Ihnen nur die Zahl $3127$ gebe und frage: "Welche zwei Primzahlen habe ich malgenommen?", stehen Sie vor einem riesigen Problem. Sie müssen mühsam alle Zahlen durchprobieren.

In der Kryptographie nutzt man Primzahlen mit hunderten von Stellen. Das Produkt ($N$) ist öffentlich bekannt. Aber die Faktoren ($p$ und $q$), die man zum Entschlüsseln braucht, sind geheim. Selbst alle Supercomputer der Welt bräuchten Millionen Jahre, um $N$ wieder in $p$ und $q$ zu zerlegen.

Der Briefkasten-Vergleich

RSA funktioniert wie ein öffentlicher Briefkasten:

  1. Public Key (Das Schloss): Jeder kann Nachrichten in den Briefkasten werfen und ihn verschließen. Dieser Schlüssel ist öffentlich bekannt.

  2. Private Key (Der Schlüssel): Nur der Besitzer des Briefkastens hat den Schlüssel, um ihn zu öffnen und die Nachrichten herauszuholen.

    Wenn Sie also "https" im Browser sehen, hat Ihre Bank Ihnen gerade ihr offenes Vorhängeschloss geschickt. Ihr Browser schließt Ihre Daten damit ein, und nur die Bank kann sie wieder öffnen.

Die Gefahr durch Quantencomputer

Diese Sicherheit ist nicht absolut, sie ist nur eine Frage der Zeit. Ein normaler Computer ist zu langsam zum "Knacken" (Faktorisieren). Aber Quantencomputer könnten mit dem Shor-Algorithmus diese Rechnung theoretisch in Sekunden lösen. Deshalb suchen Mathematiker heute schon nach "Post-Quanten-Kryptographie", die nicht mehr auf Primzahlen basiert, sondern auf noch komplexeren geometrischen Gittern.


Kontakt

Name: Adelard Armino - ChatGPTDeutsch.Info Adelard Armino - ChatGPT Deutsch

Telefon: +49 15227788154

E-Mail: [email protected]

Adresse: Limmerstraße 13, 30451 Hannover, Deutschland

Pesquisar
Categorias
Leia Mais
Outro
Fullerene Market Size, Share, Trends, Demand, Growth, Challenges and Competitive Outlook
"Executive Summary Fullerene Market : The global fullerene market size was valued...
Por Nshita Hande 2025-07-24 06:45:07 0 903
Jogos
VPN Packages 2025 – Top Picks & Features Explained
Top VPN Packages for 2025 Seeking the perfect cybersecurity suite in 2025? VPN bundles stand out...
Por Xtameem Xtameem 2025-10-23 02:54:22 0 404
Shopping
First Lady out to Golden Goose a horse farm in the to eyeball
It is everything. Since then, this country favorite has become a city staple from New York to...
Por Higgins Lean 2025-03-12 07:29:39 0 3K
Jogos
Big Bang Theory Online: How to Watch Safely
Watching Big Bang Theory Online The final installment of The Big Bang Theory aired on May 16,...
Por Xtameem Xtameem 2025-11-17 03:11:04 0 467
Outro
China Topper Generator Set Manufacturer Co., Ltd.
China Topper Generator Set Manufacturer Co., Ltd. is a leading and trusted generator...
Por China Topper Generator 2025-11-04 07:48:42 0 1K